This problem is a coupled system of two equations with a mixed derivative in the coupling term (Lame equations); the context of the problem comes from the subject of linear elasticity.
Equation solved: Coupled system of two equations


where
,
and
are the
and
displacements,
is Young’s Modulus, and
is Poisson’s ratio.
Domain of interest:
with a slit from
to
.
Boundary conditions: Dirichlet, given by exact solution.
Known exact solution for mode 1:
![u(x, y) = \frac{1}{2G} r^{\lambda}[(k - Q(\lambda + 1))cos(\lambda \theta) - \lambda cos((\lambda - 2) \theta)].](../../../_images/math/b96594289d3c70d65f398b52474de7249b285c55.png)
![v(x, y) = \frac{1}{2G} r^{\lambda}[(k + Q(\lambda + 1))sin(\lambda \theta) + \lambda sin((\lambda - 2) \theta)].](../../../_images/math/68fb2eaced34472ec14890e4a6ab73b4ef690411.png)
here lambda = 0.5444837367825, and Q = 0.5430755788367.
Known exact solution for mode 2:
![u(x, y) = \frac{1}{2G} r^{\lambda}[(k - Q(\lambda + 1))sin(\lambda \theta) - \lambda sin((\lambda - 2) \theta)].](../../../_images/math/766a754d142051ed3520be9b18cd7f5457578801.png)
![v(x, y) = -\frac{1}{2G} r^{\lambda}[(k + Q(\lambda + 1))cos(\lambda \theta) + \lambda cos((\lambda - 2) \theta)].](../../../_images/math/22fd4814acd279c6803bd726013c56f07a43bdfb.png)
here lambda = 0.9085291898461, and Q = -0.2189232362488.
Both in mode 1 and mode 2,
, and
.
Final mesh (h-FEM, p=1, anisotropic refinements):
Final mesh (h-FEM, p=2, anisotropic refinements):
Final mesh (hp-FEM, h-anisotropic refinements):
DOF convergence graphs:
CPU convergence graphs:
Final mesh (hp-FEM, h-anisotropic refinements):
Final mesh (hp-FEM, hp-anisotropic refinements):
DOF convergence graphs:
CPU convergence graphs: