NIST-02 (Reentrant Corner)

This is a reentrant corner problem causing a singularity in the solution.

Model problem

Equation solved: Laplace equation

(1)-\Delta u = 0.

Domain of interest: (-1, 1)^2 with a section removed from the clockwise side of the positive x axis.

Boundary conditions: Dirichlet, given by exact solution.

Exact solution

u(x, y) = r^{\alpha}\sin(\alpha \theta)

where \alpha = \pi / \omega, r = \sqrt{x^2+y^2}, and \theta = tan^{-1}(y/x). Here \omega determines the angle of the re-entrant corner.

Material parameters

This benchmark has four different versions, we use the global variable PARAM (below) to switch among them.

int PARAM = 1;     // PARAM determines which parameter values you wish to use for the strength of the singularity in
                   // the current (nist-2) Reentrant Corner problem.
                   // PARAM      strength         OMEGA            ALPHA
                   // 0:            1             5*Pi/4           4/5
                   // 1:            2             3*Pi/2           2/3
                   // 2:            3             7*Pi/4           4/7
                   // 3:            4             2*Pi             1/2

Sample solution

Solution for \omega = 3\pi / 2:

Solution.

Comparison of h-FEM (p=1), h-FEM (p=2) and hp-FEM with anisotropic refinements

Final mesh (h-FEM, p=1, anisotropic refinements):

Final mesh.

Final mesh (h-FEM, p=2, anisotropic refinements):

Final mesh.

Final mesh (hp-FEM, h-anisotropic refinements):

Final mesh.

DOF convergence graphs:

DOF convergence graph.

CPU convergence graphs:

CPU convergence graph.

hp-FEM with iso, h-aniso and hp-aniso refinements

Final mesh (hp-FEM, isotropic refinements):

Final mesh.

Final mesh (hp-FEM, h-anisotropic refinements):

Final mesh.

Final mesh (hp-FEM, hp-anisotropic refinements):

Final mesh.

DOF convergence graphs:

DOF convergence graph.

CPU convergence graphs:

CPU convergence graph.